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Abstract—In many wireless communication systems, radios are
subject to duty cycle constraint, that is, a radio only actively
transmits signals over a fraction of the time. For example, it is
desirable to have a small duty cycle in some low power systems; a
half-duplex radio cannot keep transmitting if it wishes to receive
useful signals; and a cognitive radio needs to listen and detect
primary users frequently. This work studies the capacity of scalar
discrete-time Gaussian channels subject to duty cycle constraint
as well as average transmit power constraint. The duty cycle
constraint can be regarded as a requirement on the minimum
fraction of nontransmission or zero symbols in each codeword. A
unique discrete input distribution is shown to achieve the channel
capacity. In many situations, numerical results demonstrate that
using the optimal input can improve the capacity by a large
margin compared to using Gaussian input, which is capacity-
achieving in the absence of the duty cycle constraint. This
is because the positions of the nontransmission symbol in a
codeword can convey information. The results suggest that, under
duty cycle constraint, departing from the usual paradigm of
intermittent packet transmissions may yield substantial gain.

I. INTRODUCTION

In many wireless communication systems, a radio is de-
signed to transmit actively only for a fraction of the time,
which is known as its duty cycle. For example, the ultra-
wideband system proposed in [1] employs impulse radio to
transmit short bursts of signals to trade bandwidth for power
savings. The physical half-duplex constraint also requires a
radio to stop transmission from time to time if it wishes to
receive useful signals. Hence wireless relays are subject to
duty cycle constraint, so do cognitive radios which have to
listen to the channel frequently to avoid causing interference
to primary users. The de facto standard solution under duty
cycle constraint is to transmit packets intermittently.

This work studies the question of what is the optimal
signaling for a Gaussian channel with duty cycle constraint as
well as average transmission power constraint. For simplicity,
we consider a discrete-time scalar additive white Gaussian
noise (AWGN) channel. We assume the analog waveform
corresponding to each symbol is of the length of exactly one
symbol interval to keep the discussion concise. An important
observation is that the signaling in nontransmission periods
can be regarded as transmission of the special symbol zero,
so that the duty cycle constraint is equivalent to a requirement
on the minimum fraction of zero symbols in each transmitted
codeword. The mathematical model of the AWGN channel and
input constraints is described in Section II.

Determining the capacity of a channel subject to various
input constraints is a classical problem. It is well-known that
Gaussian signaling achieves the capacity of a Gaussian channel
with input power constraint only. Smith [2] investigated the
capacity of a scalar AWGN channel under both peak power
constraint and average power constraint. The input distribution
that achieves the capacity is shown to be discrete with a
finite number of probability mass points. The discreteness
of capacity-achieving distributions for various channels, in-
cluding quadrature Gaussian channels, and Rayleigh-fading
channels is also established in [3]–[7]. Chan [8] studied the
capacity-achieving input distribution for conditional Gaussian
channels which form a general channel model for many
practical communication systems.

The impact of duty cycle constraint on capacity-achieving
signaling is underexplored in the literature. In Section III of
this paper, we use a similar approach as in [2] and [8] to show
that the capacity-achieving input distribution for an AWGN
channel with duty cycle and power constraints is discrete. The
optimal distribution has an infinite number of probability mass
points, whereas only a finite number of the points are found
in every bounded interval. This enables efficient numerical
optimization of the input distribution.

Numerical results in Section IV demonstrate that significant
gain is possible using discrete signaling with finite probabil-
ity mass points compared to using Gaussian signaling. For
example, in case the radio is allowed to transmit no more
than half the time, i.e., the duty cycle is no greater than 50%,
a near-optimal discrete input achieves 50% higher rate than
Gaussian signaling at 10 dB signal-to-noise ratio (SNR). This
suggests that, compared to intermittently transmitting packets
using Gaussian or Gaussian-like signaling, it is more efficient
to disperse nontransmission symbols within each packet to
form codewords, which results in a form of on-off signaling.

A key reason for the superiority of on-off signaling is
that the positions of nontransmission symbols can be used to
convey a substantial amount of information, especially in case
of low SNR and low duty cycle. This has been observed in the
past. For example, as shown in [9] (see also [10], [11]), time
sharing or time-division duplex (TDD) can fall considerably
short of the theoretical limits in a relay network: The capacity
of a cascade of two noiseless binary bit pipes through a half-
duplex relay is 1.14 bits per channel use, which far exceeds
the 0.5 bit achieved by TDD and even the 1 bit upper bound



on the rate of binary signaling.
Besides that duty cycle constraint is frequently seen in

practice, another motivation of this study is a recent work
reported in [12], in which on-off signaling is proposed for a
clean-slate design of wireless ad hoc networks formed by half-
duplex radios. Using this signaling scheme, called rapid on-
off-division duplex (RODD), a node listens to the channel and
receives useful signals during its own off symbols within each
frame. Each node can transmit and receive messages at the
same time over one frame interval, thereby achieving (virtual)
full-duplex communication. Understanding the impact of duty
cycle constraint is crucial to characterizing the fundamental
limits of such wireless networks.

II. SYSTEM MODEL

Consider digital communication systems where coded data
are mapped to waveforms for transmission. Usually there is
a collection of waveforms, all of one symbol duration, where
each waveform represents a symbol (or letter) from a discrete
alphabet. Without loss of capacity, we assume some linear
modulation scheme is used, such as pulse amplitude modula-
tion (PAM) or quadrature amplitude modulation (QAM). We
view nontransmission over a symbol interval as transmitting
the all zero waveform. In other words, a symbol interval of
nontransmission can be regarded as transmitting the symbol
0, which carries no energy.

For simplicity, we consider the baseband discrete-time
model for the AWGN channel. The received signal over a
block of n symbols can be described by Yi = Xi + Ni,
i = 1, . . . , n, where Xi denotes the transmitted symbol at time
i and N1, . . . , Nn are independent standard Gaussian random
variables. The constraint that the duty cycle is no greater than
1− q, where q ∈ (0, 1), can be considered as a constraint that
the fraction of symbol 0 in the input codeword is no less than
q. That is, every codeword (x1, x2, . . . , xn) satisfies

1

n

n∑
i=1

11{xi 6=0} ≤ 1− q (1)

where 11{·} is the indicator function. In addition, we consider
a frequently-used constraint that the average input power or
the SNR of the channel is no greater than P .

III. THE CAPACITY-ACHIEVING INPUT

Let µ denote the distribution (a.k.a. probability measure)
of the channel input X . The corresponding output probability
density function of Y = X + N with standard Gaussian N
exists and is

pY (y;µ) =

∫
pY |X(y|x)dµ = Eµ

{
1√
2π
e−

(y−X)2

2

}
.

The differential entropy of Y , expressed as

hY (µ) = −
∫ ∞
−∞

pY (y;µ) log pY (y;µ)dy (2)

relates to the mutual information I(µ) = I(X;Y ) by the
following:

I(µ) = hY (µ)− 1

2
log(2πe). (3)

We define a set of probability measures Λ =
{
µ : µ({0}) ≥

q,Eµ
{
X2
}
< ∞

}
and its subset Λ0 =

{
µ : µ({0}) ≥

q,Eµ
{
X2
}
≤ P}.

In the following, we apply a similar approach as in [2]
and [8] to study the channel capacity problem under two
constraints. A key difference here is that the input is not
necessarily bounded due to the lack of a peak power constraint.
The existence and uniqueness of the capacity-achieving input
distribution are guaranteed by the following result.

Theorem 1: The capacity of an AWGN channel with duty
cycle no greater than 1− q and SNR no greater than P is

C = max
µ∈Λ0

I(µ), (4)

which is achieved by a unique probability measure µ0 ∈ Λ0,
which is symmetric about 0.

There are three parts to Theorem 1: (i) the existence and
uniqueness of the maximizer of (4), (ii) the achievability of
C, and (iii) the converse. Suppose for now (i) is true and
denote the unique maximizer of (4) by µ0. Since the mirror
reflection of µ0 about the origin is evidently also a maximizer
of (4), the uniqueness requires that µ0 be symmetric. The
achievability of I(µ0) can be shown using Shannon’s random
codebook generated according to distribution µ0. To establish
the converse, we view the duty cycle constraint (1) as a per-
letter cost constraint on the input and find that higher rates than
C are unachievable due to Fano’s inequality and concavity of
I(µ). The techniques for showing (ii) and (iii) are standard
in information theory, so the details are omitted due to space
limitations. In the following, we provide a detailed proof of
(i).

Proof (The existence and uniqueness of the maximizer):
We shall establish the existence using the fact that a continuous
function achieves its maximum in a compact set of a metric
space. The uniqueness follows by strict concavity of I(µ).

Let (R, d) be one-dimensional Euclidean metric space with
Borel sigma algebra B. Let P denote the collection of all
probability measures on the measurable space (R,B). Given
µ, ν ∈ P , define the Lévy-Prohorov metric [13] as

L(µ, ν) = inf
{
δ :µ(F ) ≤ ν(F (δ)) + δ and

ν(F ) ≤ µ(F (δ)) + δ for all F ⊆ B
}

(5)

where F (δ) denotes the set of all x ∈ R which lie a d-distance
less than δ from F . Then L is a complete metric for P . Since
R is a Polish space, convergence of probability measures in
the Lévy-Prohorov metric is equivalent to weak convergence
of measures. The following two lemmas are useful:

Lemma 1: Λ0 is compact in the metric space (P, L).
Lemma 2: I(µ) is continuous on Λ0.
Due to space limitations, the proof of all lemmas in this

paper is omitted. Interested readers are referred to a longer



version of this work [14] for more details. By Lemmas 1
and 2, the mutual information I(µ) achieves its maximum in
Λ0. The existence of the capacity-achieving input distribution
then follows.

To show the uniqueness, let µ0, µ1 ∈ Λ0 be two capacity-
achieving input distributions. For any θ ∈ (0, 1), define µθ =
θµ0 +(1−θ)µ1, which is also in Λ0 due to its convexity, then

pY (y;µθ) = θpY (y;µ0) + (1− θ)pY (y;µ1). (6)

By the strict concavity of the function −x log x, we have

hY (µθ) ≥ θhY (µ0) + (1− θ)hY (µ1) (7)

with equality if and only if pY (y;µ0) = pY (y;µ1). Since
µ0 and µ1 are both capacity-achieving measures, (7) holds
with equality, i.e., pY (y;µ0) = pY (y;µ1). Since the Fourier
transform of the probability density of the Gaussian noise
N is nonzero everywhere, pY (y;µ) and µ are in one-to-
one correspondence (see [8]). Hence the uniqueness of the
capacity-achieving input distribution is proved.

A point x ∈ R is said to be a point of increase of a
probability measure µ if µ(O) > 0 for every open subset
O of R containing x. Let Sµ be the set of points of increase
of µ.

Theorem 2: The capacity-achieving input probability mea-
sure µ0 is discrete with an infinite number of probability mass
points, i.e., Sµ0

is countably infinite. Moreover, the number of
probability mass points inside any bounded interval is finite.

To prove Theorem 2, we need the following result.
Theorem 3: Let µ0 ∈ Λ0 and hN = 1

2 log(2πe). Then µ0

is capacity achieving if and only if there exists λ ≥ 0 such
that for all x ∈ R,

qd(0) + (1− q)d(x) ≤ 0 (8)

where

d(x) = h(x;µ0)− hN − I(µ0)− λ(x2 − P ) (9)

and h(x;µ0) = −
∫∞
−∞ pY |X(y|x) log pY (y;µ0)dy. Further-

more, the equality of (8) holds for all x ∈ Sµ0\{0}.
Proof of Theorem 3: We need the following result:

Lemma 3: If two input probability measures µ1, µ2 sat-
isfy that Eµ1

{
X2
}

< ∞ and Eµ2

{
X2
}

< ∞, then
−
∫∞
−∞ pY (y;µ2) log pY (y;µ1)dy <∞.

It is easy to see that Λ is a convex set, and I(µ) is finite
for any µ ∈ Λ by Lemma 3. Define the Lagrangian J(µ) =
I(µ) − λEµ

{
X2 − P

}
, where λ is the Lagrange multiplier.

Then µ0 is capacity achieving if and only if there exists λ ≥ 0
such that the following two conditions hold [15]:

(a) λEµ0

{
X2 − P

}
= 0;

(b) for all µ ∈ Λ, J(µ0) ≥ J(µ).
Due to the concavity of hY (µ) by (7), J(µ) is also concave.
Condition (b) is then equivalent to that J ′µ0

(µ) ≤ 0 for all
µ ∈ Λ, where J ′µ0

(µ) is the weak derivative of J(µ) at µ0

defined as

J ′µ0
(µ) = lim

θ→0+

J ((1− θ)µ0 + θµ)− J(µ0)

θ
. (10)

The following result is useful and a similar result with proof
can be found in [5], [8].

Lemma 4: Let µ0 ∈ Λ, the weak derivative of the mutual
information function I(µ), µ ∈ Λ at µ0 is

I ′µ0
(µ) =

∫
h(x;µ0)dµ− hN − I(µ0). (11)

Now by Lemma 4, the linearity of Eµ
{
X2 − P

}
w.r.t. µ

and Condition (a), J ′µ0
(µ) can be calculated as

J ′µ0
(µ) =

∫
h(x;µ0)dµ− hN − I(µ0)− λEµ

{
X2 − P

}
= Eµ {d(X)} (12)

where h(x;µ0) is well defined due to the following result:
Lemma 5: For any µ ∈ Λ and w ∈ C,

h(w;µ) = −
∫ ∞
−∞

1√
2π
e−

(y−w)2

2 log pY (y;µ)dy (13)

is well defined and it is a holomorphic function of w on C.
Consequently, h(x;µ) = −

∫∞
−∞ pY |X(y|x) log pY (y;µ)dy is

a continuous function of x on R.
Therefore, according to Conditions (a) and (b), µ0 is ca-

pacity achieving if and only if λEµ0

{
X2 − P

}
= 0 and

Eµ {d(x)} ≤ 0 for all µ ∈ Λ.
The necessity part of Theorem 3 is shown as follows.

Suppose µ0 is capacity achieving and λ is chosen to satisfy
λEµ0

{
X2 − P

}
= 0 and Eµ {d(X)} ≤ 0 for all µ ∈ Λ.

For any x ∈ R\{0}, choose µ such that µ({0}) = q and
µ({x}) = 1− q, so by the fact that µ ∈ Λ, we have

0 ≥ Eµ {d(X)} = qd(0) + (1− q)d(x). (14)

Due to the continuity of h(x;µ0) by Lemma 5, d(x) is also
continuous so that (14) holds for all x ∈ R.

Define
a(x) = qd(0) + (1− q)d(x), (15)

then a(x) ≤ 0 for all x ∈ R and evidently a(0) = d(0).
Next we show that a(x) = 0 for all x ∈ Sµ0\{0}. Let x0 ∈
Sµ0\{0}, and suppose, to the contrary, that a(x0) = −ε < 0.
By the continuity of a(x), there exists an open set B containing
x0 such that 0 /∈ B and a(x) ≤ − ε

2 for all x ∈ B. Then,∫
a(x)dµ0 ≤ qa(0) +

(
− ε

2

)
µ0(B) < qd(0). (16)

On the other hand, however, by (9) and (15),∫
a(x)dµ0 = qd(0) + (1− q)

(∫
h(x;µ0)dµ0

− hN − I(µ0)− λEµ0

{
X2 − P

})
= qd(0) + (1− q) (hY (µ0)− hN − I(µ0)) (17)
= qd(0) (18)

where we use the fact that λEµ0

{
X2 − P

}
= 0 in (17). A

contradiction occurs, so it is proved that a(x) = 0 for all
x ∈ Sµ0

\{0}, which implies the necessity part.
The sufficiency part of Theorem 3 is established next.



Suppose a(x) = qd(0) + (1 − q)d(x) ≤ 0 for all x ∈ R.
By integrating a(x) w.r.t. µ0, we have, by (15),

qa(0) ≥
∫
a(x)dµ0

= qa(0)− (1− q)λEµ0

{
X2 − P

}
(19)

≥ qa(0) (20)

where (19) is due to Eµ0 {h(x;µ0)− hN − I(µ0)} = 0 and
a(0) = d(0), and (20) follows from Eµ0

{
X2
}
≤ P since

µ0 ∈ Λ0. Hence, λEµ0

{
X2 − P

}
= 0 due to the fact that

q < 1. Furthermore, for any µ ∈ Λ, by integrating a(x) w.r.t.
µ, we have, again by (15),

qa(0) ≥
∫
a(x)dµ = qd(0) + (1− q)Eµ {d(X)} .

Because a(0) = d(0), we have Eµ {d(X)} ≤ 0. Together with
λEµ0

{
X2 − P

}
= 0, µ0 must be capacity achieving.

With the necessary and sufficient condition for the capacity-
achieving input distribution established as in Theorem 3, we
next prove Theorem 2.

Proof of Theorem 2: First we extend the function d(x)
in Theorem 3 to be defined on the whole complex plane C as

d(w) = h(w;µ0)− hN − I(µ0)− λ(w2 − P ) (21)

where h(w;µ0) is defined in (13) and λ ≥ 0 satisfies
the condition (8). By Lemma 5, h(w;µ0) is a holomorphic
function of w on C. Therefore, a(w) = qd(0)+(1−q)d(w) is
also holomorphic on C. According to Theorem 3, each element
in the set Sµ0\{0} is a zero of the function a(w).

Next we show that for any bounded interval L of R, Sµ0

⋂
L

is a finite set. Suppose, to the contrary, Sµ0

⋂
L is infinite,

then it has a limit point in R by the Bolzano-Weierstrass
Theorem [16] and hence, a(w) = 0 on the whole complex
plane C by the Identity Theorem [17]. Then, by (9) and (15),∫ ∞
−∞

e−
(x−y)2

2

√
2π

(
log pY (y;µ0) +D + λ(y2 − P − 1)

)
dy = 0

(22)
for every x ∈ R, where D = hN + I(µ0) − q

1−qd(0) is a
constant. This is to say that the convolution of a standard
Gaussian density and g(y) = log pY (y;µ0)+D+λ(y2−P−1)
is equal to the zero function.

By Jensen’s inequality, we have

pY (y;µ) = Eµ

{
1√
2π
e−

(y−X)2

2

}
≥ 1√

2π
e−

1
2Eµ{(y−X)2} = e−

1
2y

2−ay−b (23)

where a = −Eµ {X} and b = 1
2

(
Eµ
{
X2
}

+ log(2π)
)
. By

the assumption that Eµ
{
X2
}
< ∞, it is easy to see that

a, b ∈ R, so | logPY (y;µ)| ≤ 1
2y

2 + ay + b. As a result,
there exist some α, β > 0 such that |g(y)| ≤ αy2 + β.
Therefore, according to [8, Corollary 9], g(y) is the zero
function, which suggests that capacity-achieving output distri-
bution pY (y;µ0) is Gaussian. This requires X to be Gaussian,

which has no probability mass at 0 as desired. Therefore,
Sµ0

⋂
L must be a finite set for any bounded interval L,

which further implies that Sµ0 is at most countable because
Sµ0 =

⋃∞
n=1 (Sµ0

⋂
(−n, n)).

Finally, we show that Sµ0
is countably infinite. Suppose, to

the contrary, Sµ0 = {xi}Ni=1 is a finite set with µ0({xi}) = pi
and |xi| ≤ B1 for all i = 1, 2, . . . , N . For any y > B1, we
have

pY (y;µ0) =

N∑
i=1

1√
2π
e−

(y−xi)
2

2 pi ≤ e−
(y−B1)2

2 . (24)

For any ε > 0, choose B2 > 0 such that
∫ B2

−B2

1√
2π
e−

x2

2 dx >
1− ε. Now according to (8) and (9), for any x > B1 +B2,

0 ≥ −
∫ ∞
−∞

1√
2π
e−

(y−x)2
2 log pY (y;µ0)dy −D − λ(x2 − P )

≥
∫ x+B2

x−B2

1√
2π
e−

(y−x)2
2 · 1

2
(y −B1)2dy −D − λ(x2 − P )

≥ 1

2
(x−B1)2(1− ε)−D − λ(x2 − P ). (25)

In order to make (25) hold for very large x, λ must satisfy
λ ≥ 1

2 . On the other hand, however, it can be proved that
λ < 1

2 for any P > 0. A contradiction occurs, thus it follows
that Sµ0 is countably infinite.

To finish the proof, it suffices to show that λ < 1
2 for any

P > 0. For fixed q ∈ (0, 1), denote the channel capacity
defined in (4) by C(P ) and the lagrange multiplier as λ(P ).
Denote CG(P ) = 1

2 log(1+P ), which is the channel capacity
of a Gaussian channel with the average power constraint
only. By the envelope theorem [15], λ(P ) is the derivative
of C(P ) w.r.t. P . Since C(0) = CG(0) = 0 and the derivative
of CG(P ) at P = 0 is 1

2 , we have λ(0) ≤ 1
2 , otherwise

we could find a small enough P such that C(P ) would
exceed CG(P ) which is obviously impossible. Next we show
that C(P ) is strictly concave for P ≥ 0. Suppose µ1 and
µ2 are the capacity-achieving input distributions of (4) for
different P1 and P2, respectively. For any θ ∈ (0, 1), define
µθ = θµ1 + (1 − θ)µ2. It is easy to see that µθ satisfies that
the duty cycle is no greater than 1− q and the average input
power is no greater than θP1 + (1 − θ)P2. As argued in the
proof of Theorem 1, we have

C(θP1 + (1− θ)P2) ≥ I(µθ) ≥ θI(µ1) + (1− θ)I(µ2), (26)

where the second inequality becomes equality if and only
if µ1 = µ2. This is, however, impossible by the following
arguments. Without loss of generality, let P2 > P1 and
a =

√
P2/P1 > 1. Let µ′2 be the input distribution of a

random variable aX , where the distribution of X is µ1. It is
obvious that

C(P2) ≥ I(µ′2) = hY (µ1)− 1

2
log(2πe/a2)

> I(µ1) = C(P1). (27)

Therefore, the strict concavity of C(P ) for P ≥ 0 follows
by (26). Hence, λ(P ) i.e., the derivative of C(P ) is strictly
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Fig. 1. Suboptimal input distribution for P (X = 0) ≥ q = 0.3

decreasing for P ≥ 0, which implies that λ(P ) < λ(0) = 1
2

for all P > 0.

IV. NUMERICAL RESULTS

One implication of Theorem 2 is that directly computing the
capacity-achieving input distribution requires solving an opti-
mization problem with infinite variables which is prohibitive.
Assuming any upper bound on the number of probability mass
points, however, a numerical optimization over the mutual
information can yield a suboptimal input distribution and a
lower bound on the channel capacity. As we increase the
number of mass points allowed, the lower bound can be further
refined. We take this approach to numerically compute a good
approximation of the channel capacity by optimizing over a
sufficient number of probability mass points. Given the duty
cycle and power constraints, we first numerically optimize the
mutual information by a 3-point input distribution (including
a mass at 0), then increase the number of probability mass
points by 2 at a time to improve the mutual information, until
the improvement is less than 10−3.

First consider the case that the duty cycle is no greater than
70%, i.e., P (X = 0) ≥ q = 0.3. For different SNRs, the mass
points of the near-optimal input distribution with finite support
along with the corresponding probability masses are shown in
Fig. 1. Due to symmetry, only one half of the input distribution
is plotted. We can see that as the SNR increases, more masses
are put on higher-amplitude points, whereas the probability
mass at zero achieves its lower bound 0.3 eventually.

In Fig 2, we compare rate achieved by the near-optimal
input distribution and rate achieved by the conventional TDD
scheme, which is (1− q) times the Gaussian channel capacity
without duty cycle constraint. It is shown in the figure that
there is substantial gain for both 0 dB and 10 dB SNRs by
using discrete input over Gaussian signaling. For example,
at 10 dB SNR, given the duty cycle is no more than 50%,
the discrete input distribution achieves 50% higher rate than
TDD. Hence departing from the usual paradigm of intermittent
packet transmissions may yield substantial gain.
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